Science and technology prospects for ultra-cold atoms

Mark Kasevich Stanford University kasevich@stanford.edu

Nov. 2002

- Atom de Broglie wave sensors
- S&T impact
- BEC impact
- Correlated atom systems

Atom de Broglie wave sensors

CAMOS Nov. 2002

Position information

Problem: How obtain precise position information without GPS?

Next generation Inertial Navigation System (INS) solution: Improved INS may enable accurate global positioning without external reference signals

Current INS limitations:

- gyroscope drift (angle random walk)
- gravity compensation
- system cost and complexity

Atom de Brogliewave interference sensors address these current limitations

Existing high-accuracy technology Nov. 2002

19,000 parts

\$300K/accelerometer in '89

1970 technology. 2001, 652 units ordered.

Source: www.fas.org

Existing systems:

 Triad of gyroscopes (mechanical)

CAMOS

- Triad of accelerometers
- Precision gimbal mounts

Gravity assisted-navigation with atom interferometric (AI) sensors

AI acceleration sensors offer breakthrough bias-stability and scale-factor stability

- enables high accuracy gravity gradiometry
- enables all-accelerometer-based gravity compensated navigation
- 3 year transition to field-tested systems. Leverage NIMA and Navy investments.

Conept design for gravity compensated IMU

Cut-away view illustrating core sensor component: a Cs vapor cell. Not shown: control electronics.

Concept design

2.75"x1.75".

10⁻⁸ g/Hz^{1/2}

accelerometer

for

2-axis

AI sensor applications

CAMOS

Nov. 2002

Gravity compensated navigation Map-matching Real-time gravity anomaly correction for INS

Gravity anomaly characterization Underground facility detection

Strategic platforms

Precision munitions Submarine/surface ship Land vehicles Helicopter/fixed wing aircraft ULDB Balloon flight Satellite constellation

Commercial/civilian applications Satellite geodesy Earthquake prediction Water table monitoring Oil/mineral exploration

Core sensor technology: High accuracy accelerometers

Light-pulse AI accelerometers:

Scale Factor stability: 10⁻¹²

Bias stability: <10⁻¹⁰ g

CAMOS

Nov. 2002

1000x improvement over state-of-the-art in these key sensor parameters.

Laboratory realizations at Stanford and Yale.

Interferometric sensors

Optical Interferometry

Litton Ring Laser Gyroscope

Fibersense Fiberoptic Gyroscope

 Future atom opticsbased sensors may outperform existing inertial sensors by a factor of 10⁶.

CAMOS

Nov. 2002

 Current (laboratory) atom optics-based sensors outperform existing sensors by a factor of 10².

Young's double slit with atoms

Interference fringes

(a) (b) (c)

One of the first experiments to demonstrate de Broglie wave interference with atoms, 1991

Atom interferometer force sensors

The quantum mechanical wave-like properties of atoms can be used to sense inertial forces.

Gravity/Accelerations

As atom climbs gravitational potential, velocity decreases and wavelength increases

Rotations

Rotations induce path length differences by shifting the positions of beam splitting optics

CAMOS

Nov. 2002

Enabling Science: Laser Cooling

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

Laser cooling: Laser light is used to cool atomic vapors to temperatures of $\sim 10^{-6}$ deg K.

Image source: www.nobel.se/physics

The Nobel Prize in Physics 1997

CAMOS

Nov. 2002

"for development of methods to cool and trap atoms with laser light"

Enabling Science: BEC/Atom Lasers

CAMOS Nov. 2002

Bose-Einstein Condensation of a dilute Rb atomic vapor

> 1st Atom Laser, MIT

"for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates"

Eric A. Cornell

Wolfgang Ketterle

Carl E. Wieman

ø	۲	۲	
USA	Germany	USA	
JILA and National Institute of Standards & Technology (NIST) Boulder, CO, USA	Massachusetts Institute of Technology (MIT) Cambridge, MA, USA	JILA and University of Colorado Boulder, CO, USA	
1961 -	1957 -	1951 -	

2001 Nobel Prize!

Stanford laboratory gravimeter

Courtesy of S. Chu, Stanford

Monitoring of local gravity using T = 400 ms fringes

CAMOS

Nov. 2002

Raman sideband cooling used to achieve very long interrogation times (200 nK launch temperature!)

Stanford/Yale laboratory gravity gradiometer

Distinguish gravity induced accelerations from those due to platform motion with differential acceleration measurements.

 $(2.8 \times 10^{-9} \text{ g/Hz}^{1/2} \text{ per} accelerometer})$

CAMOS

Nov. 2002

Stanford/Yale Gravity Gradiometer: Measurement of G

Pb mass translated vertically along gradient measurement axis.

CAMOS

Nov. 2002

Typical data:

~ 1x10⁻⁸ g change in acceleration due to gravitational forces for different Pb positions

CAMOS Nov. 2002

Measurement of G

Systematic	$\frac{8G}{G}$
Initial Atom Velocity	1.88×10^{-3}
Initial Atom Position	1.85×10^{-3}
Pb Magnetic Field Gradients	$1.00 imes 10^{-3}$
Rotations	$0.98 imes 10^{-3}$
Source Positioning	$0.82 imes 10^{-3}$
Source Mass Density	$0.36 imes 10^{-3}$
Source Mass Dimensions	$0.34 imes 10^{-3}$
Gravimeter Separation	$0.19 imes 10^{-3}$
Source Mass Density inhomogeneity	$0.16 imes 10^{-3}$
TOTAL	$3.15 imes 10^{-3}$

Present sensitivity/accuracy: $\delta G = 3 \times 10^{-3} G$

Measurement consistent with accepted value

Stanford/Yale laboratory gyroscope

AI gyroscope, demonstrated laboratory performance:

2x10⁻⁶ deg/hr^{1/2} ARW

 $< 10^{-4}$ deg/hr bias stability

Compact, fieldable (navigation) and dedicated very high-sensitivity (Earth rotation dynamics, tests of GR) geometries possible.

CAMOS

Stanford h/m

Science and Technology Applications

Airborne GG validation: BHP FALCON program

Existing technology

CAMOS

Nov. 2002

Al sensors potentially offer 10 x – 100 x improvement in detection sensitivity at reduced instrument costs.

CAMOS Nov. 2002

Underground structure detection

Gravity gradiometers can detect underground structures via their gravitational signatures.

AI appears to be sole sensor technology capable of meeting stringent sensitivity and accuracy requirements.

Strategic moving platforms for gravity gradiometry:

- Helicopter/UAV platform
- Satellite reconnaisance (?)
- Truck

Tunnel detection

300 250 200 Height (m) 0.1 E/(Hz)^{1/2} 150 100 $1 \, \text{E}/(\text{Hz})^{1/2}$ 50 $10 \text{ E}/(\text{Hz})^{1/2}$ 0 50 100 150 200 0 Velocity (mph)

Tunnel model: 5 m x 5 m tunnel

 $\delta \rho = 3 \text{ g/cm}^3$

Field-ready 1 E/Hz^{1/2} instrument currently under development for truck/helicopter/aircraft platform

CAMOS Nov. 2002

Geodesy

Accelerometer sensitivity: 10^{-13} g/Hz^{1/2} – Long free-fall times in orbit

Measurement baseline

- 100 m (ISS)
- 100 km (Satellite constellation)

Sensitivity:

- -10^{-4} E/Hz^{1/2} (ISS)
- -10^{-7} E/Hz^{1/2} (Satellite constellation)

Earthquake; water table monitoring (collaboration with T. Parsons, USGS)

30' Mean Gravity Anomalies: EGM96 (Nmax=360)

http://www.esa.int/export/esaLP/goce.html

Test of General Relativity

Lorentz-like force law:

$$\begin{aligned} \frac{d\vec{v}}{dt} &= \vec{g} + \frac{\vec{v}}{c} \times \vec{H} \\ \vec{H} &= \frac{2G}{c} \left[\vec{S} - \frac{\vec{S} \cdot \hat{r}}{r^3} \hat{r} \right] \end{aligned}$$

S is angular momentum of rotating body

Basic idea: Compare rotation inferred from astrophysical observations to atom interferometer gyro signal.

Ground-based

10⁻¹⁴ rad/sec rotation sensitivity required

Equivalence Principle

Compare relative acceleration of Cs and Rb atoms (or two Rb isotopes) using AI methods.

Constrain possible "new physics" beyond Standard Model at unprecedented levels.

10⁻¹³ g/Hz^{1/2} differential acceleration sensitivity appears feasible on ISS/free-flyer (in collaboration with L. Maleki, JPL through NASA Fund. Phys./flight definition)

RECENT theory: "Little String Theory at a TeV", I. Antoniadis, S. Dimopoulos, A. Giveon, hep-th/0103033, 2002.

> Dimopoulos: "More speculative than extradimensions...."

Navigation

High-accuracy IMU with gravity compensation under development for Trident submarine navigation.

Array of 3-axis accelerometers on rigid platform

- In-line differential acceleration measurements along independent axes allow discrimination of angular accelerations from gravity gradients
- Integrate angular acceleration to correct for centrigual perturbations

Long-term vision: low-cost, high-reliability gravity compensated IMU's.

2nd generation proof-ofconcept instrument. Brown = laser beams; Grey = vacuum cell

Navigation with accelerometer arrays

Allows for gravity anomaly and platform position determination.

CAMOS

Nov. 2002

High accuracy gyroscopes may not be needed.

Differential acceleration measurements

Differential acceleration measurements contains terms due to rotations and angular accelerations:

$$\begin{pmatrix} \mathbf{f}_{1x} - \mathbf{f}_{0x} \\ \mathbf{f}_{1y} - \mathbf{f}_{0y} \\ \mathbf{f}_{1z} - \mathbf{f}_{0z} \end{pmatrix} = \begin{bmatrix} -\left(\Gamma_{xx} + \Omega_{y}^{2} + \Omega_{z}^{2}\right) & \mathbf{\Omega}_{j} \\ \dot{\Omega}_{z} - \left(\Gamma_{xy} - \Omega_{x}\Omega_{y}\right) & \mathbf{\Omega}_{j} \\ -\dot{\Omega}_{y} - \left(\Gamma_{xz} - \Omega_{x}\Omega_{z}\right) & \boldsymbol{\rho}_{j} \end{bmatrix}$$

$$- \frac{\dot{\Omega}_{z}}{\dot{\Omega}_{z}} - \left(\Gamma_{xy} - \Omega_{x}\Omega_{y}\right) & \dot{\Omega}_{y} - \left(\Gamma_{xz} - \Omega_{x}\Omega_{z}\right) \\ - \left(\Gamma_{yy} + \Omega_{x}^{2} + \Omega_{z}^{2}\right) & -\dot{\Omega}_{x} - \left(\Gamma_{yz} - \Omega_{y}\Omega_{z}\right) \\ \dot{\Omega}_{x} - \left(\Gamma_{yz} - \Omega_{y}\Omega_{z}\right) & -\left(\Gamma_{zz} + \Omega_{x}^{2} + \Omega_{y}^{2}\right) \end{bmatrix} \begin{pmatrix} \boldsymbol{\rho}_{x} \\ \boldsymbol{\rho}_{y} \\ \boldsymbol{\rho}_{z} \end{pmatrix}$$

ij: Gravity gradient **2**i: Rotation

CAMOS

Nov. 2002

: Displacement

Accelerometer arrays enable highaccuracy navigation.

See PLANS 2002, A. Zorn, Dynamics Research Corporation

Compact prototype under development

6dof motion testing platform

Component sub-systems under development

CAMOS

Nov. 2002

Field-ready prototype available FY03, est.

Ground-based accelerometer

Under development: 2.75"x1.75", 10⁻⁸ g/Hz^{1/2} 2-axis accelerometer CAMOS

Nov. 2002

CAMOS Nov. 2002

BEC impact

Atom lasers

Bose-Einstein Condensation of a dilute Rb atomic vapor

Revolution in production of bright, coherent atomic sources

1st Atom Laser, MIT

Atom interferometry with atom lasers

CAMOS Nov. 2002

Interference of two overlapping Bose-Einstein condensates: demonstrates analogy with laser light sources (Ketterle, MIT)

Demonstration of coherence properties and possible applications

Measurement of g with a modelocked atom laser (Yale)

Proof of principle with potential for 1000 x improvement in gravimeter sensitivity.

Pulse output frequency is proportional to g.

Nov. 2002 Next generation atom-optic devices

CAMOS

	Atomic Source	Atom Optics	Read-out
Current Generation	 Laser cooled atoms 	 Photon recoil Free-space diffraction grating 	 Shot-noise limited
Next Generation	• Atom lasers	• Waveguides	 Quantum correlated state (1/N)

Next generation pay-off: compact, ultra-sensitive accelerometer, gyroscopes, clocks

Possible 1000x performance gain in next generation sensors

Waveguide AI sensor types

Waveguide devices:

Unproven (coherence has yet to be demonstrated!)

Likely very high sensitivity, intermediate accuracy.

Gyroscope, gravity gradient, and accelerometer topologies exist.

Technology vision: Compact, ultra-sensitive (1000x existing sensors), inexpensive sensors

Atom Waveguides

Basic atom guiding concepts have been demonstrated by several groups.

Prentiss, Harvard

Anderson, JILA

MPQ, Garching

Achieved Bose-Einstein condensation in microtrap.

Matter-wave amplification

Experiment

Ketterle, MIT

Laboratory demonstration of coherent matter-wave amplification

Results

Interference of an (unamplified) seed pulse with a reference pulse of equal intensity. A weaker seed pulse led to a reduced fringe contrast.

When the weak seed pulse was amplified, an increase of the fringe contrast provided the proof for the phasecoherence of the atom amplification process

CAMOS

Nov. 2002

Atom interferometry with squeezed state atom lasers

Quantum mechanics of many-particle systems allows for measurement sensitivities below the standard (classical) shot-noise limit.

Atom interferometry with squeezed states.

Possible 1000-fold improvement in sensor sensitivity.

Laboratory demonstration of squeezed-state formation

CAMOS

Nov. 2002

Heisenberg interferometry with degenerate Bose gases

Sub shot-noise interferometry with squeezed/Fock states: (following Holland and Burnett, 1993)

Dual Fock state at input ports

Number measurements at output ports

Capable of resolving phase shifts at Heisenberg limit $(\Delta \phi \sim 1/N).$

CAMOS

Nov. 2002

Possible significant gains for interferometer sensitivity

Bouyer and Kasevich, PRA, 1996 (for BEC atoms)

CAMOS Nov. 2002

Correlated atom systems

BEC in lattice potentials

Our regime:

- 1-D
- 100's of atoms per site, 10's of lattice sites
- Weak tunneling (0.01 – 300 Hz, tunable)
- Strong interactions (100 – 500 Hz mean field per particle)

Why interesting?

 Quantum states highly correlated/entangled

CAMOS

Nov. 2002

- Growing links with CM Theory/QPT
- Possible applications to precision measurement/quantum information

This talk

- Ground state properties
- Dynamic response
 - In-situ transport measurements

Bose-Hubbard Hamiltonian

$$\begin{split} H &= \gamma \sum_{\langle i,j \rangle} \hat{a}_i^{\dagger} \hat{a}_j + \frac{1}{2} g \beta_i \sum_i \hat{a}_i^{\dagger} \hat{a}_i^{\dagger} \hat{a}_i \hat{a}_i - \sum_i \mu_i \hat{a}_i^{\dagger} \hat{a}_i \\ \text{tunneling} & \text{mean-field} & \text{external potential} \end{split}$$

Solve for ground-state and dynamics for ~3000 atoms occupying 16 lattice sites in harmonic potential.

Problem: Hilbert space is huge. Approximations required.

Transport measurement: Center-of-mass oscillation

Image of lattice array.

CAMOS

Nov. 2002

~150 atoms in central well.

Suddenly displace harmonic potential, leaving corrugated potential fixed.

Observe subsequent dynamic evolution of array center-ofmass (oscillation amplitude and frequency).

Quantum insulating cross-over

 $E_J \equiv N\gamma = (\# \text{ atoms})(\text{tunneling freq.})$ $E_C \equiv g\beta = (\text{mean field energy per atom})$

Related work from MPQ

MI transition in 3D optical lattice. Approximately 3 atoms per lattice site.

I. Bloch, Nature, 2002.

CAMOS

Nov. 2002

Future

- Quantum critical region
 - Quantum phase transitions
- Rotating lattice sites
 - Analog to fractional quantum Hall
- Fermions in lattice
 - High Tc analog
- QIS
 - Physics-based (use atoms in lattice to understand CM systems)
 - New algorithms for factorization